Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.

Identifieur interne : 002300 ( Main/Exploration ); précédent : 002299; suivant : 002301

Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.

Auteurs : Jinhuan Chen ; Qianqian Tian ; Tao Pang ; Libo Jiang ; Rongling Wu ; Xinli Xia [République populaire de Chine] ; Weilun Yin

Source :

RBID : pubmed:24884892

Descripteurs français

English descriptors

Abstract

BACKGROUND

Compared with other Populus species, Populus euphratica Oliv. exhibits better tolerance to abiotic stress, especially those involving extreme temperatures. However, little is known about gene regulation and signaling pathways involved in low temperature stress responses in this species. Recent development of Illumina/Solexa-based deep-sequencing technologies has accelerated the study of global transcription profiling under specific conditions. To understand the gene network controlling low temperature perception in P. euphratica, we performed transcriptome sequencing using Solexa sequence analysis to generate a leaf transcriptome at a depth of 10 gigabases for each sample.

RESULTS

Using the Trinity method, 52,081,238 high-quality trimmed reads were assembled into a non-redundant set and 108,502 unigenes with an average length of 1,047 bp were generated. After performing functional annotations by aligning all-unigenes with public protein databases, 85,584 unigenes were annotated. Differentially expressed genes were investigated using the FPKM method by applying the Benjamini and Hochberg corrections. Overall, 2,858 transcripts were identified as differentially expressed unigenes in at least two samples and 131 were assigned as unigenes expressed differently in all three samples. In 4 °C-treated sample and -4 °C-treated sample, 1,661 and 866 differently expressed unigenes were detected at an estimated absolute log2-fold change of > 1, respectively. Among them, the respective number of up-regulated unigenes in C4 and F4 sample was 1,113 and 630, while the respective number of down-regulated ungenes is 548 and 236. To increase our understanding of these differentially expressed genes, we performed gene ontology enrichment and metabolic pathway enrichment analyses. A large number of early cold (below or above freezing temperature)-responsive genes were identified, suggesting that a multitude of transcriptional cascades function in cold perception. Analyses of multiple cold-responsive genes, transcription factors, and some key transduction components involved in ABA and calcium signaling revealed their potential function in low temperature responses in P. euphratica.

CONCLUSIONS

Our results provide a global transcriptome picture of P. euphratica under low temperature stress. The potential cold stress related transcripts identified in this study provide valuable information for further understanding the molecular mechanisms of low temperature perception in P. euphratica.


DOI: 10.1186/1471-2164-15-326
PubMed: 24884892
PubMed Central: PMC4035058


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.</title>
<author>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
</author>
<author>
<name sortKey="Tian, Qianqian" sort="Tian, Qianqian" uniqKey="Tian Q" first="Qianqian" last="Tian">Qianqian Tian</name>
</author>
<author>
<name sortKey="Pang, Tao" sort="Pang, Tao" uniqKey="Pang T" first="Tao" last="Pang">Tao Pang</name>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing 100083, China. xiaxl@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24884892</idno>
<idno type="pmid">24884892</idno>
<idno type="doi">10.1186/1471-2164-15-326</idno>
<idno type="pmc">PMC4035058</idno>
<idno type="wicri:Area/Main/Corpus">002166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002166</idno>
<idno type="wicri:Area/Main/Curation">002166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002166</idno>
<idno type="wicri:Area/Main/Exploration">002166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.</title>
<author>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
</author>
<author>
<name sortKey="Tian, Qianqian" sort="Tian, Qianqian" uniqKey="Tian Q" first="Qianqian" last="Tian">Qianqian Tian</name>
</author>
<author>
<name sortKey="Pang, Tao" sort="Pang, Tao" uniqKey="Pang T" first="Tao" last="Pang">Tao Pang</name>
</author>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing 100083, China. xiaxl@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cold Temperature (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Genes, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Molecular Sequence Data</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Compared with other Populus species, Populus euphratica Oliv. exhibits better tolerance to abiotic stress, especially those involving extreme temperatures. However, little is known about gene regulation and signaling pathways involved in low temperature stress responses in this species. Recent development of Illumina/Solexa-based deep-sequencing technologies has accelerated the study of global transcription profiling under specific conditions. To understand the gene network controlling low temperature perception in P. euphratica, we performed transcriptome sequencing using Solexa sequence analysis to generate a leaf transcriptome at a depth of 10 gigabases for each sample.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using the Trinity method, 52,081,238 high-quality trimmed reads were assembled into a non-redundant set and 108,502 unigenes with an average length of 1,047 bp were generated. After performing functional annotations by aligning all-unigenes with public protein databases, 85,584 unigenes were annotated. Differentially expressed genes were investigated using the FPKM method by applying the Benjamini and Hochberg corrections. Overall, 2,858 transcripts were identified as differentially expressed unigenes in at least two samples and 131 were assigned as unigenes expressed differently in all three samples. In 4 °C-treated sample and -4 °C-treated sample, 1,661 and 866 differently expressed unigenes were detected at an estimated absolute log2-fold change of > 1, respectively. Among them, the respective number of up-regulated unigenes in C4 and F4 sample was 1,113 and 630, while the respective number of down-regulated ungenes is 548 and 236. To increase our understanding of these differentially expressed genes, we performed gene ontology enrichment and metabolic pathway enrichment analyses. A large number of early cold (below or above freezing temperature)-responsive genes were identified, suggesting that a multitude of transcriptional cascades function in cold perception. Analyses of multiple cold-responsive genes, transcription factors, and some key transduction components involved in ABA and calcium signaling revealed their potential function in low temperature responses in P. euphratica.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results provide a global transcriptome picture of P. euphratica under low temperature stress. The potential cold stress related transcripts identified in this study provide valuable information for further understanding the molecular mechanisms of low temperature perception in P. euphratica.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24884892</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.</ArticleTitle>
<Pagination>
<MedlinePgn>326</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-326</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Compared with other Populus species, Populus euphratica Oliv. exhibits better tolerance to abiotic stress, especially those involving extreme temperatures. However, little is known about gene regulation and signaling pathways involved in low temperature stress responses in this species. Recent development of Illumina/Solexa-based deep-sequencing technologies has accelerated the study of global transcription profiling under specific conditions. To understand the gene network controlling low temperature perception in P. euphratica, we performed transcriptome sequencing using Solexa sequence analysis to generate a leaf transcriptome at a depth of 10 gigabases for each sample.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using the Trinity method, 52,081,238 high-quality trimmed reads were assembled into a non-redundant set and 108,502 unigenes with an average length of 1,047 bp were generated. After performing functional annotations by aligning all-unigenes with public protein databases, 85,584 unigenes were annotated. Differentially expressed genes were investigated using the FPKM method by applying the Benjamini and Hochberg corrections. Overall, 2,858 transcripts were identified as differentially expressed unigenes in at least two samples and 131 were assigned as unigenes expressed differently in all three samples. In 4 °C-treated sample and -4 °C-treated sample, 1,661 and 866 differently expressed unigenes were detected at an estimated absolute log2-fold change of > 1, respectively. Among them, the respective number of up-regulated unigenes in C4 and F4 sample was 1,113 and 630, while the respective number of down-regulated ungenes is 548 and 236. To increase our understanding of these differentially expressed genes, we performed gene ontology enrichment and metabolic pathway enrichment analyses. A large number of early cold (below or above freezing temperature)-responsive genes were identified, suggesting that a multitude of transcriptional cascades function in cold perception. Analyses of multiple cold-responsive genes, transcription factors, and some key transduction components involved in ABA and calcium signaling revealed their potential function in low temperature responses in P. euphratica.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results provide a global transcriptome picture of P. euphratica under low temperature stress. The potential cold stress related transcripts identified in this study provide valuable information for further understanding the molecular mechanisms of low temperature perception in P. euphratica.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhuan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Qianqian</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Libo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, Beijing 100083, China. xiaxl@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EF148840</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24884892</ArticleId>
<ArticleId IdType="pii">1471-2164-15-326</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-326</ArticleId>
<ArticleId IdType="pmc">PMC4035058</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2003 Apr 15;17(8):1043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Nov 22;441(3):630-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):813-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):943-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):3155-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1064-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19407143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Aug;87(4):904-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24325588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 May;229(6):1335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19322584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1238-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):877-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Jul;164(7):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16884820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Jul 15;167(11):905-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013;14:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23497356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jan 9;136(1):136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Jun 1;521(2):245-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23562718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;639:39-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20387039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 26;453(7199):1239-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Aug;234(2):331-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21448719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Jun 1;521(2):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23545306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Jun;277(6):713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 13;274(5294):1900-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Aug;1(2):e26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16121258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 3;280(5360):104-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jun;6(5):486-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Mar;7(3):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1086-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2011 Sep 1;483(1-2):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jan;122(1):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23865740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3807-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):761-767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Feb;71(2):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Oct 10;375(1):80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Jul;55(4):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1341-1349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jun;105(2):601-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1999;:138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10786296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(3):399-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 May;67(1-2):169-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):98-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Oct;39(10):9629-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<name sortKey="Pang, Tao" sort="Pang, Tao" uniqKey="Pang T" first="Tao" last="Pang">Tao Pang</name>
<name sortKey="Tian, Qianqian" sort="Tian, Qianqian" uniqKey="Tian Q" first="Qianqian" last="Tian">Qianqian Tian</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002300 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002300 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24884892
   |texte=   Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24884892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020